Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896376

RESUMO

Polymeric films made from chitosan (CS) doped with metal oxide (MO = cobalt (II) oxide and strontium oxide) nanoparticles at different concentrations (5, 10, 15, and 20% wt. MO/CS) were fabricated with the solution cast method. FTIR, SEM, and XRD spectra were used to study the structural features of those nanocomposite films. The FTIR spectra of chitosan showed the main characteristic peaks that are usually present, but they were shifted considerably by the chemical interaction with metal oxides. FTIR analysis of the hybrid chitosan-CoO nanocomposite exhibited notable peaks at 558 and 681 cm-1. Conversely, the FTIR analysis of the chitosan-SrO composite displayed peaks at 733.23 cm-1, 810.10 cm-1, and 856.39 cm-1, which can be attributed to the bending vibrations of Co-O and Sr-O bonds, respectively. In addition, the SEM graphs showed a noticeable morphological change on the surface of chitosan, which may be due to surface adsorption with metal oxide nanoparticles. The XRD pattern also revealed a clear change in the crystallinity of chitosan when it is in contact with metal oxide nanoparticles. The presence of characteristic signals for cobalt (Co) and strontium (Sr) are clearly shown in the EDX examinations, providing convincing evidence for their incorporation into the chitosan matrix. Moreover, the stability of the nanoparticle-chitosan coordinated bonding was verified from the accurate and broadly parametrized semi-empirical tight-binding quantum chemistry calculation. This leads to the determination of the structures' chemical hardness as estimated from the frontier's orbital calculations. We characterized the dielectric properties in terms of the real and imaginary dielectric permittivity as a function of frequency. Dielectric findings reveal the existence of extensive interactions of CoO and SrO, more pronounced for SrO, with the functional groups of CS through coordination bonding. This induces the charge transfer of the complexes between CoO and SrO and the CS chains and a decrease in the amount of the crystalline phase, as verified from the XRD patterns.

2.
Polymers (Basel) ; 14(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683821

RESUMO

This study is very promising for providing a renewable enrgy (H2 gas fuel) under the elctrochemical splitting of the wastwater (sewage water). This study has double benefits: hydrogen generation and contaminations removel. This study is carried out on sewage water, third stage treated, from Beni-Suef city, Egypt. Antimony tin oxide (ATO)/polyaniline (PANI)/PbI2 photoelectrode is prepared through the in situ oxidative polymerization of PANI on ATO, then PANI is used as an assistant for PbI2 deposition using the ionic adsorption deposition method. The chemical structural, morphological, electrical, and optical properties of the composite are confirmed using different analytical tools such as X-ray diffreaction (XRD), scanning electron microscope (SEM), transmision electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis spectroscopy. The prepared PbI2 inside the composite has a crystal size of 33 nm (according to the peak at 12.8°) through the XRD analyses device. SEM and TEM confirm the hexagonal PbI2 sheets embedded on the PANI nanopores surface. Moreover, the bandgap values are enhanced very much after the composite formation, in which the bandgap values for PANI and PANI/PbI2 are 3 and 2.51 eV, respectively. The application of ATO/PANI/PbI2 nanocomposite electrode for sewage splitting and H2 generation is carried out through a three-electrode cell. The measurements carreid out using the electrocehical worksattion under th Xenon lamp (100 mW.cm-2). The produced current density (Jph) is 0.095 mA.cm-2 at 100 mW.cm-2 light illumination. The photoelectrode has high reproducibility and stability, in which and the number of H2 moles is 6 µmole.h-1.cm-1. The photoelectrode response to different monochromatic light, in which the produced Jph decreases from 0.077 to 0.072 mA.cm-2 with decreasing of the wavelengths from 390 to 636 nm, respectively. These values confirms the high response of the ATO/PANI/PbI2 nanocomposite electrode for the light illuminaton and hydrogen genration under broad light region. The thermodynamic parameters: activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*) values are 7.33 kJ/mol, -4.7 kJ/mol, and 203.3 J/mol.K, respectively. The small values of ΔS* relted to the high sesnivity of the prepared elctrode for the water splitting and then the hydrogen gneration. Finally, a theoretical study was mentioned for calculation geometry, electrochemical, and thermochemistry properties of the polyaniline/PbI2 nanocomposite as compared with that for the polyaniline.

3.
Chem Phys Lett ; 777: 138745, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34024911

RESUMO

In this study, density functional theory (DFT) and docking calculations were systematically performed to study the non-competitive interaction between Hydroxychloroquine (HCQ) and azithromycin (AZTH). The calculated changes in Gibbs free energy and enthalpy (at 310 K) were positive, indicating the non-spontaneous formation of HCQ-AZTH specifically in water media. Docking calculation confirmed the obtained DFT result as evident from the different binding sites of both drugs to the SARS-CoV-2 main protease and human angiotensin-converting enzyme 2 (ACE2) proteins. The HCQ-AZTH structure revealed enhanced electrochemical properties, suggesting the synergy between HCQ and AZTH without affecting their therapeutic efficacy against SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...